GPU

Kubernetes now supports the allocation of GPU resources for containers (currently only NVIDIA GPUs), which is widely used in scenarios like deep learning.

How to Use

Kubernetes v1.8 and Later

Starting with Kubernetes v1.8, GPUs are supported through the DevicePlugin feature. Prior to use, several configurations are needed:

  • Enable the following feature gates on kubelet/kube-apiserver/kube-controller-manager: --feature-gates="DevicePlugins=true"

  • Install Nvidia drivers on all Nodes, including NVIDIA Cuda Toolkit and cuDNN

  • Configure Kubelet to use Docker as the container engine (which is the default setting), as other container engines do not yet support this feature

NVIDIA Plugin

NVIDIA requires nvidia-docker.

To install nvidia-docker:

# Install docker-ce
sudo apt-get install \
    apt-transport-https \
    ca-certificates \
    curl \
    software-properties-common
curl -fsSL https://download.docker.com/linux/ubuntu/gpg | sudo apt-key add -
sudo add-apt-repository \
   "deb [arch=amd64] https://download.docker.com/linux/ubuntu \
   $(lsb_release -cs) \
   stable"
sudo apt-get update
sudo apt-get install docker-ce

# Add the package repositories
curl -s -L https://nvidia.github.io/nvidia-docker/gpgkey | \
  sudo apt-key add -
curl -s -L https://nvidia.github.io/nvidia-docker/ubuntu16.04/amd64/nvidia-docker.list | \
  sudo tee /etc/apt/sources.list.d/nvidia-docker.list
sudo apt-get update

# Install nvidia-docker2 and reload the Docker daemon configuration
sudo apt-get install -y nvidia-docker2
sudo pkill -SIGHUP dockerd

# Test nvidia-smi with the latest official CUDA image
docker run --runtime=nvidia --rm nvidia/cuda nvidia-smi

Set Docker default runtime to nvidia:

# cat /etc/docker/daemon.json
{
    "default-runtime": "nvidia",
    "runtimes": {
        "nvidia": {
            "path": "/usr/bin/nvidia-container-runtime",
            "runtimeArgs": []
        }
    }
}

Deploy the NVIDIA device plugin:

# For Kubernetes v1.8
kubectl create -f https://raw.githubusercontent.com/NVIDIA/k8s-device-plugin/v1.8/nvidia-device-plugin.yml

# For Kubernetes v1.9
kubectl create -f https://raw.githubusercontent.com/NVIDIA/k8s-device-plugin/v1.9/nvidia-device-plugin.yml

GCE/GKE GPU Plugin

This plugin does not require nvidia-docker and also supports CRI container runtimes.

# Install NVIDIA drivers on Container-Optimized OS:
kubectl create -f https://raw.githubusercontent.com/GoogleCloudPlatform/container-engine-accelerators/k8s-1.9/daemonset.yaml

# Install NVIDIA drivers on Ubuntu (experimental):
kubectl create -f https://raw.githubusercontent.com/GoogleCloudPlatform/container-engine-accelerators/k8s-1.9/nvidia-driver-installer/ubuntu/daemonset.yaml

# Install the device plugin:
kubectl create -f https://raw.githubusercontent.com/kubernetes/kubernetes/release-1.9/cluster/addons/device-plugins/nvidia-gpu/daemonset.yaml

Example of Requesting nvidia.com/gpu Resources

apiVersion: v1
kind: Pod
metadata:
  name: cuda-vector-add
spec:
  restartPolicy: OnFailure
  containers:
    - name: cuda-vector-add
      # https://github.com/kubernetes/kubernetes/blob/v1.7.11/test/images/nvidia-cuda/Dockerfile
      image: "k8s.gcr.io/cuda-vector-add:v0.1"
      resources:
        limits:
          nvidia.com/gpu: 1 # requesting 1 GPU

Kubernetes v1.6 and v1.7

alpha.kubernetes.io/nvidia-gpu has been deprecated in v1.10, please use nvidia.com/gpu for newer versions.

To use GPUs in Kubernetes v1.6 and v1.7, prerequisite configurations are required:

  • Install Nvidia drivers on all Nodes, including NVIDIA Cuda Toolkit and cuDNN

  • Enable the feature gates --feature-gates="Accelerators=true" on apiserver and kubelet

  • Configure Kubelet to use Docker as the container engine (the default setting), as other container engines are not yet supported

Use the resource name alpha.kubernetes.io/nvidia-gpu to specify the number of GPUs required, for example:

apiVersion: v1
kind: Pod
metadata:
  name: tensorflow
spec:
  restartPolicy: Never
  containers:
  - image: gcr.io/tensorflow/tensorflow:latest-gpu
    name: gpu-container-1
    command: ["python"]
    env:
    - name: LD_LIBRARY_PATH
      value: /usr/lib/nvidia
    args:
    - -u
    - -c
    - from tensorflow.python.client import device_lib; print(device_lib.list_local_devices())
    resources:
      limits:
        alpha.kubernetes.io/nvidia-gpu: 1 # requests one GPU
    volumeMounts:
    - mountPath: /usr/local/nvidia/bin
      name: bin
    - mountPath: /usr/lib/nvidia
      name: lib
    - mountPath: /usr/lib/x86_64-linux-gnu/libcuda.so
      name: libcuda-so
    - mountPath: /usr/lib/x86_64-linux-gnu/libcuda.so.1
      name: libcuda-so-1
    - mountPath: /usr/lib/x86_64-linux-gnu/libcuda.so.375.66
      name: libcuda-so-375-66
  volumes:
    - name: bin
      hostPath:
        path: /usr/lib/nvidia-375/bin
    - name: lib
      hostPath:
        path: /usr/lib/nvidia-375
    - name: libcuda-so
      hostPath:
        path: /usr/lib/x86_64-linux-gnu/libcuda.so
    - name: libcuda-so-1
      hostPath:
        path: /usr/lib/x86_64-linux-gnu/libcuda.so.1
    - name: libcuda-so-375-66
      hostPath:
        path: /usr/lib/x86_64-linux-gnu/libcuda.so.375.66
$ kubectl create -f pod.yaml
pod "tensorflow" created

$ kubectl logs tensorflow
...
[name: "/cpu:0"
device_type: "CPU"
memory_limit: 268435456
locality {
}
incarnation: 9675741273569321173
, name: "/gpu:0"
device_type: "GPU"
memory_limit: 11332668621
locality {
  bus_id: 1
}
incarnation: 7807115828340118187
physical_device_desc: "device: 0, name: Tesla K80, pci bus id: 0000:00:04.0"
]

Note:

  • GPU resources must be requested in resources.limits, resources.requests are not valid

  • Containers may request either 1 GPU or multiple GPUs, but not fractional parts of a GPU

  • GPUs cannot be shared among multiple containers

  • It is assumed by default that all Nodes are equipped with GPUs of the same model

Multiple GPU Models

If the Nodes in your cluster are installed with GPUs of different models, you can use Node Affinity to schedule Pods to Nodes with a specific GPU model.

First, label your Nodes with the GPU model during cluster initialization:

# Label your nodes with the accelerator type they have.
kubectl label nodes <node-with-k80> accelerator=nvidia-tesla-k80
kubectl label nodes <node-with-p100> accelerator=nvidia-tesla-p100

Then, set Node Affinity when creating a Pod:

apiVersion: v1
kind: Pod
metadata:
  name: cuda-vector-add
spec:
  restartPolicy: OnFailure
  containers:
    - name: cuda-vector-add
      # https://github.com/kubernetes/kubernetes/blob/v1.7.11/test/images/nvidia-cuda/Dockerfile
      image: "k8s.gcr.io/cuda-vector-add:v0.1"
      resources:
        limits:
          nvidia.com/gpu: 1
  nodeSelector:
    accelerator: nvidia-tesla-p100 # or nvidia-tesla-k80 etc.

Using CUDA Libraries

NVIDIA Cuda Toolkit and cuDNN must be pre-installed on all Nodes. To access /usr/lib/nvidia-375, CUDA libraries should be passed to containers as hostPath volumes:

apiVersion: batch/v1
kind: Job
metadata:
  name: nvidia-smi
  labels:
    name: nvidia-smi
spec:
  template:
    metadata:
      labels:
        name: nvidia-smi
    spec:
      containers:
      - name: nvidia-smi
        image: nvidia/cuda
        command: ["nvidia-smi"]
        imagePullPolicy: IfNotPresent
        resources:
          limits:
            alpha.kubernetes.io/nvidia-gpu: 1
        volumeMounts:
        - mountPath: /usr/local/nvidia/bin
          name: bin
        - mountPath: /usr/lib/nvidia
          name: lib
      volumes:
        - name: bin
          hostPath:
            path: /usr/lib/nvidia-375/bin
        - name: lib
          hostPath:
            path: /usr/lib/nvidia-375
      restartPolicy: Never
$ kubectl create -f job.yaml
job "nvidia-smi" created

$ kubectl get job
NAME         DESIRED   SUCCESSFUL   AGE
nvidia-smi   1         1            14m

$ kubectl get pod -a
NAME               READY     STATUS      RESTARTS   AGE
nvidia-smi-kwd2m   0/1       Completed   0          14m

$ kubectl logs nvidia-smi-kwd2m
Fri Jun 16 19:49:53 2017
+-----------------------------------------------------------------------------+
| NVIDIA-SMI 375.66                 Driver Version: 375.66                    |
|-------------------------------+----------------------+----------------------+
| GPU  Name        Persistence-M| Bus-Id        Disp.A | Volatile Uncorr. ECC |
| Fan  Temp  Perf  Pwr:Usage/Cap|         Memory-Usage | GPU-Util  Compute M. |
|===============================+======================+======================|
|   0  Tesla K80           Off  | 0000:00:04.0     Off |                    0 |
| N/A   74C    P0    80W / 149W |      0MiB / 11439MiB |    100%      Default |
+-------------------------------+----------------------+----------------------+

+-----------------------------------------------------------------------------+
| Processes:                                                       GPU Memory |
|  GPU       PID  Type  Process name                               Usage      |
|=============================================================================|
|  No running processes found                                                 |
+-----------------------------------------------------------------------------+

Appendix: Installing CUDA

To install CUDA:

# Check for CUDA and try to install.
if ! dpkg-query -W cuda; then
  # The 16.04 installer works with 16.10.
  curl -O http://developer.download.nvidia.com/compute/cuda/repos/ubuntu1604/x86_64/cuda-repo-ubuntu1604_8.0.61-1_amd64.deb
  dpkg -i ./cuda-repo-ubuntu1604_8.0.61-1_amd64.deb
  apt-get update
  apt-get install cuda -y
fi

To install cuDNN:

First, visit the website https://developer.nvidia.com/cudnn, register and download cuDNN v5.1, then use the following commands to install it:

tar zxvf cudnn-8.0-linux-x64-v5.1.tgz
ln -s /usr/local/cuda-8.0 /usr/local/cuda
sudo cp -P cuda/include/cudnn.h /usr/local/cuda/include
sudo cp -P cuda/lib64/libcudnn* /usr/local/cuda/lib64
sudo chmod a+r /usr/local/cuda/include/cudnn.h /usr/local/cuda/lib64/libcudnn*

After installation, you can run nvidia-smi to check the status of the GPU devices:

$ nvidia-smi
Fri Jun 16 19:33:35 2017
+-----------------------------------------------------------------------------+
| NVIDIA-SMI 375.66                 Driver Version: 375.66                    |
|-------------------------------+----------------------+----------------------+
| GPU  Name        Persistence-M| Bus-Id        Disp.A | Volatile Uncorr. ECC |
| Fan  Temp  Perf  Pwr:Usage/Cap|         Memory-Usage | GPU-Util  Compute M. |
|===============================+======================+======================|
|   0  Tesla K80           Off  | 0000:00:04.0     Off |                    0 |
| N/A   74C    P0    80W / 149W |      0MiB / 11439MiB |    100%      Default |
+-------------------------------+----------------------+----------------------+

+-----------------------------------------------------------------------------+
| Processes:                                                       GPU Memory |
|  GPU       PID  Type  Process name                               Usage      |
|=============================================================================|
|  No running processes found                                                 |
+-----------------------------------------------------------------------------+

Reference Documents

最后更新于