Kubernetes now supports the allocation of GPU resources for containers (currently only NVIDIA GPUs), which is widely used in scenarios like deep learning.
How to Use
Kubernetes v1.8 and Later
Starting with Kubernetes v1.8, GPUs are supported through the DevicePlugin feature. Prior to use, several configurations are needed:
Enable the following feature gates on kubelet/kube-apiserver/kube-controller-manager: --feature-gates="DevicePlugins=true"
Install Nvidia drivers on all Nodes, including NVIDIA Cuda Toolkit and cuDNN
Configure Kubelet to use Docker as the container engine (which is the default setting), as other container engines do not yet support this feature
NVIDIA Plugin
NVIDIA requires nvidia-docker.
To install nvidia-docker:
# Install docker-cesudoapt-getinstall\apt-transport-https\ca-certificates\curl\software-properties-commoncurl-fsSLhttps://download.docker.com/linux/ubuntu/gpg|sudoapt-keyadd-sudoadd-apt-repository\"deb [arch=amd64] https://download.docker.com/linux/ubuntu \$(lsb_release-cs) \ stable"sudoapt-getupdatesudoapt-getinstalldocker-ce# Add the package repositoriescurl-s-Lhttps://nvidia.github.io/nvidia-docker/gpgkey|\sudoapt-keyadd-curl-s-Lhttps://nvidia.github.io/nvidia-docker/ubuntu16.04/amd64/nvidia-docker.list|\sudotee/etc/apt/sources.list.d/nvidia-docker.listsudoapt-getupdate# Install nvidia-docker2 and reload the Docker daemon configurationsudoapt-getinstall-ynvidia-docker2sudopkill-SIGHUPdockerd# Test nvidia-smi with the latest official CUDA imagedockerrun--runtime=nvidia--rmnvidia/cudanvidia-smi
Set Docker default runtime to nvidia:
Deploy the NVIDIA device plugin:
GCE/GKE GPU Plugin
This plugin does not require nvidia-docker and also supports CRI container runtimes.
Example of Requesting nvidia.com/gpu Resources
Kubernetes v1.6 and v1.7
alpha.kubernetes.io/nvidia-gpu has been deprecated in v1.10, please use nvidia.com/gpu for newer versions.
To use GPUs in Kubernetes v1.6 and v1.7, prerequisite configurations are required:
Install Nvidia drivers on all Nodes, including NVIDIA Cuda Toolkit and cuDNN
Enable the feature gates --feature-gates="Accelerators=true" on apiserver and kubelet
Configure Kubelet to use Docker as the container engine (the default setting), as other container engines are not yet supported
Use the resource name alpha.kubernetes.io/nvidia-gpu to specify the number of GPUs required, for example:
Note:
GPU resources must be requested in resources.limits, resources.requests are not valid
Containers may request either 1 GPU or multiple GPUs, but not fractional parts of a GPU
GPUs cannot be shared among multiple containers
It is assumed by default that all Nodes are equipped with GPUs of the same model
Multiple GPU Models
If the Nodes in your cluster are installed with GPUs of different models, you can use Node Affinity to schedule Pods to Nodes with a specific GPU model.
First, label your Nodes with the GPU model during cluster initialization:
Then, set Node Affinity when creating a Pod:
Using CUDA Libraries
NVIDIA Cuda Toolkit and cuDNN must be pre-installed on all Nodes. To access /usr/lib/nvidia-375, CUDA libraries should be passed to containers as hostPath volumes:
Appendix: Installing CUDA
To install CUDA:
To install cuDNN:
First, visit the website https://developer.nvidia.com/cudnn, register and download cuDNN v5.1, then use the following commands to install it:
After installation, you can run nvidia-smi to check the status of the GPU devices:
# Label your nodes with the accelerator type they have.
kubectl label nodes <node-with-k80> accelerator=nvidia-tesla-k80
kubectl label nodes <node-with-p100> accelerator=nvidia-tesla-p100
apiVersion: v1
kind: Pod
metadata:
name: cuda-vector-add
spec:
restartPolicy: OnFailure
containers:
- name: cuda-vector-add
# https://github.com/kubernetes/kubernetes/blob/v1.7.11/test/images/nvidia-cuda/Dockerfile
image: "k8s.gcr.io/cuda-vector-add:v0.1"
resources:
limits:
nvidia.com/gpu: 1
nodeSelector:
accelerator: nvidia-tesla-p100 # or nvidia-tesla-k80 etc.
$ kubectl create -f job.yaml
job "nvidia-smi" created
$ kubectl get job
NAME DESIRED SUCCESSFUL AGE
nvidia-smi 1 1 14m
$ kubectl get pod -a
NAME READY STATUS RESTARTS AGE
nvidia-smi-kwd2m 0/1 Completed 0 14m
$ kubectl logs nvidia-smi-kwd2m
Fri Jun 16 19:49:53 2017
+-----------------------------------------------------------------------------+
| NVIDIA-SMI 375.66 Driver Version: 375.66 |
|-------------------------------+----------------------+----------------------+
| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |
|===============================+======================+======================|
| 0 Tesla K80 Off | 0000:00:04.0 Off | 0 |
| N/A 74C P0 80W / 149W | 0MiB / 11439MiB | 100% Default |
+-------------------------------+----------------------+----------------------+
+-----------------------------------------------------------------------------+
| Processes: GPU Memory |
| GPU PID Type Process name Usage |
|=============================================================================|
| No running processes found |
+-----------------------------------------------------------------------------+
# Check for CUDA and try to install.
if ! dpkg-query -W cuda; then
# The 16.04 installer works with 16.10.
curl -O http://developer.download.nvidia.com/compute/cuda/repos/ubuntu1604/x86_64/cuda-repo-ubuntu1604_8.0.61-1_amd64.deb
dpkg -i ./cuda-repo-ubuntu1604_8.0.61-1_amd64.deb
apt-get update
apt-get install cuda -y
fi